skip to main content


Search for: All records

Creators/Authors contains: "Welch, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present results of [Cii] 158μm emission line observations, and report the spectroscopic redshift confirmation of a strongly lensed (μ∼ 20) star-forming galaxy, MACS0308-zD1 atz= 6.2078 ± 0.0002. The [Cii] emission line is detected with a signal-to-noise ratio >6 within the rest-frame UV-bright clump of the lensed galaxy (zD1.1) and exhibits multiple velocity components; the narrow [Cii] has a velocity full width half maximum (FWHM) of 110 ± 20 km s−1, while broader [Cii] is seen with an FWHM of 230 ± 50 km s−1. The broader [Cii] component is blueshifted (−80 ± 20 km s−1) with respect to the narrow [Cii] component, and has a morphology that extends beyond the UV-bright clump. We find that, while the narrow [Cii] emission is most likely associated with zD1.1, the broader component is possibly associated with a physically distinct gas component from zD1.1 (e.g., outflowing or inflowing gas). Based on the nondetection ofλ158μmdust continuum, we find that MACS0308-zD1's star formation activity occurs in a dust-free environment indicated by a strong upper limit of infrared luminosity ≲9 × 108L. Targeting this strongly lensed faint galaxy for follow-up Atacama Large Millimeter/submillimeter Array and JWST observations will be crucial to characterize the details of typical galaxy growth in the early Universe.

     
    more » « less
  2. Abstract

    We report the discovery of four galaxy candidates observed 450–600 Myr after the Big Bang with photometric redshifts betweenz∼ 8.3 and 10.2 measured using James Webb Space Telescope (JWST) NIRCam imaging of the galaxy cluster WHL0137−08 observed in eight filters spanning 0.8–5.0μm, plus nine Hubble Space Telescope filters spanning 0.4–1.7μm. One candidate is gravitationally lensed with a magnification ofμ∼ 8, while the other three are located in a nearby NIRCam module with expected magnifications ofμ≲ 1.1. Using SED fitting, we estimate the stellar masses of these galaxies are typically in the rangelogM/M= 8.3–8.7. All appear young, with mass-weighted ages <240 Myr, low dust contentAV< 0.15 mag, and specific star formation rates sSFR ∼0.25–10 Gyr−1for most. Onez∼ 9 candidate is consistent with an age <5 Myr and an sSFR ∼10 Gyr−1, as inferred from a strong F444W excess, implying [Oiii]+Hβrest-frame equivalent width ∼2000 Å, although an olderz∼ 10 object is also allowed. Anotherz∼ 9 candidate is lensed into an arc 2.″4 long with a magnification ofμ∼ 8. This arc is the most spatially resolved galaxy atz∼ 9 known to date, revealing structures ∼30 pc across. Follow-up spectroscopy of WHL0137−08 with JWST/NIRSpec will be useful to spectroscopically confirm these high-redshift galaxy candidates and to study their physical properties in more detail.

     
    more » « less
  3. Abstract

    We report the discovery of two extremely magnified lensed star candidates behind the galaxy cluster MACS J0647.7+015 using recent multiband James Webb Space Telescope (JWST) NIRCam observations. The star candidates are seen in a previously known,zphot≃ 4.8 dropout giant arc that straddles the critical curve. The candidates lie near the expected critical curve position, but lack clear counter-images on the other side of it, suggesting these are possibly stars undergoing caustic crossings. We present revised lensing models for the cluster, including multiply imaged galaxies newly identified in the JWST data, and use them to estimate background macro-magnifications of at least ≳90 and ≳50 at the positions of the two candidates, respectively. With these values, we expect effective, caustic-crossing magnifications of ∼[103–105] for the two star candidates. The spectral energy distributions of the two candidates match well the spectra of B-type stars with best-fit surface temperatures of ∼10,000 K, and ∼12,000 K, respectively, and we show that such stars with masses ≳20Mand ≳50M, respectively, can become sufficiently magnified to be observable. We briefly discuss other alternative explanations and conclude that these objects are likely lensed stars, but also acknowledge that the less-magnified candidate may alternatively reside in a star cluster. These star candidates constitute the second highest-redshift examples to date after Earendel atzphot≃ 6.2, establishing further the potential of studying extremely magnified stars at high redshifts with JWST. Planned future observations, including with NIRSpec, will enable a more detailed view of these candidates in the near future.

     
    more » « less
  4. Abstract The gravitationally lensed star WHL 0137–LS, nicknamed Earendel, was identified with a photometric redshift z phot = 6.2 ± 0.1 based on images taken with the Hubble Space Telescope. Here we present James Webb Space Telescope (JWST) Near Infrared Camera images of Earendel in eight filters spanning 0.8–5.0 μ m. In these higher-resolution images, Earendel remains a single unresolved point source on the lensing critical curve, increasing the lower limit on the lensing magnification to μ > 4000 and restricting the source plane radius further to r < 0.02 pc, or ∼4000 au. These new observations strengthen the conclusion that Earendel is best explained by an individual star or multiple star system and support the previous photometric redshift estimate. Fitting grids of stellar spectra to our photometry yields a stellar temperature of T eff ≃ 13,000–16,000 K, assuming the light is dominated by a single star. The delensed bolometric luminosity in this case ranges from log ( L ) = 5.8 to 6.6 L ⊙ , which is in the range where one expects luminous blue variable stars. Follow-up observations, including JWST NIRSpec scheduled for late 2022, are needed to further unravel the nature of this object, which presents a unique opportunity to study massive stars in the first billion years of the universe. 
    more » « less
  5. Abstract. One of the key components of this research has been the mapping of Antarctic bed topography and ice thickness parameters that are crucial for modelling ice flow and hence for predicting future ice loss andthe ensuing sea level rise. Supported by the Scientific Committee on Antarctic Research (SCAR), the Bedmap3 Action Group aims not only to produce newgridded maps of ice thickness and bed topography for the internationalscientific community, but also to standardize and make available all thegeophysical survey data points used in producing the Bedmap griddedproducts. Here, we document the survey data used in the latest iteration,Bedmap3, incorporating and adding to all of the datasets previously used forBedmap1 and Bedmap2, including ice bed, surface and thickness point data from all Antarctic geophysical campaigns since the 1950s. More specifically,we describe the processes used to standardize and make these and futuresurveys and gridded datasets accessible under the Findable, Accessible, Interoperable, and Reusable (FAIR) data principles. With the goals of making the gridding process reproducible and allowing scientists to re-use the data freely for their own analysis, we introduce the new SCAR Bedmap Data Portal(https://bedmap.scar.org, last access: 1 March 2023) created to provideunprecedented open access to these important datasets through a web-map interface. We believe that this data release will be a valuable asset to Antarctic research and will greatly extend the life cycle of the data heldwithin it. Data are available from the UK Polar Data Centre: https://data.bas.ac.uk (last access: 5 May 2023​​​​​​​). See the Data availability section for the complete list of datasets. 
    more » « less
  6. Abstract We give an overview and describe the rationale, methods, and first results from NIRCam images of the JWST “Prime Extragalactic Areas for Reionization and Lensing Science” (PEARLS) project. PEARLS uses up to eight NIRCam filters to survey several prime extragalactic survey areas: two fields at the North Ecliptic Pole (NEP); seven gravitationally lensing clusters; two high redshift protoclusters; and the iconic backlit VV 191 galaxy system to map its dust attenuation. PEARLS also includes NIRISS spectra for one of the NEP fields and NIRSpec spectra of two high-redshift quasars. The main goal of PEARLS is to study the epoch of galaxy assembly, active galactic nucleus (AGN) growth, and First Light. Five fields—the JWST NEP Time-Domain Field (TDF), IRAC Dark Field, and three lensing clusters—will be observed in up to four epochs over a year. The cadence and sensitivity of the imaging data are ideally suited to find faint variable objects such as weak AGN, high-redshift supernovae, and cluster caustic transits. Both NEP fields have sightlines through our Galaxy, providing significant numbers of very faint brown dwarfs whose proper motions can be studied. Observations from the first spoke in the NEP TDF are public. This paper presents our first PEARLS observations, their NIRCam data reduction and analysis, our first object catalogs, the 0.9–4.5 μ m galaxy counts and Integrated Galaxy Light. We assess the JWST sky brightness in 13 NIRCam filters, yielding our first constraints to diffuse light at 0.9–4.5 μ m. PEARLS is designed to be of lasting benefit to the community. 
    more » « less